
NoSQL
Quick Introduction

Alberto Rossotto 
03 / March / 2022



SQL
To understand NoSQL, we need to understand SQL

SQL databases:


• Scale well vertically


• Implement ACID transactions (Atomicity, Consistency, Isolation, Durability)


• Have a standardised query language


• Have a clearly defined schema


• Organise information in tables connected by relationships



NoSQL
Origin

Tech giants (Google, Amazon,…) hit the limits of SQL databases


• Vertical scalability was not enough: better to have horizontal scalability with 
many small boxes


• ACID transactions were too slow: availability (=speed) was preferred


• A standardised query language was not a requirement for custom made 
products


• Tables were a limit: easier to ingest the data and process it later



CAP theorem
Limits of all databases

Consistency, Availability, and Partition tolerance: pick two



CAP theorem
Limits of all databases

Consistency Availability

Partition Tolerance

NoSQL

SQL

NoSQL

Impossible



NoSQL
Overall characteristics

NoSQL databases, in general:


• Scale well horizontally


• Don’t implement ACID transactions


• Don’t have a standardised query language


• Organise information in unrelated aggregates


• Don’t require a schema


• Can handle large amount of data



NoSQL
About not having a schema

It does not mean storing whatever it comes with no structure.


Schema-less only means that the database does not enforce a schema.


Some NoSQL databases still use mandatory or optional schemas.


A “de-facto” schema is required to be able to query and parse the data.


Some databases support indexes requiring some form of structured data.



NoSQL types
Key - Value

• Generally they are the fastest in Read/Write


• Don’t offer much flexibility in terms of query


• They work perfectly as a cache. Products like Hazelcast or Datagrid blur the 
difference between a cache and a (NoSQL) database.



NoSQL types
Column databases

• They organise data in tables


• They query tables per column or per row



NoSQL types
Document based

• Generally they are the slowest in Read/Write, but can work as key-value db


• Very flexible query language if the document is XML or JSON 


• They may support transactions up to a degree. Transactionality is 
discouraged for performances. The border of the ideal transaction is the 
within a single document.



NoSQL types
Graph database

• Used to store relations


• Very fast to retrieve data with complex relational queries


• Slow at performing insertion or updates


• Limited use-cases


• One of the most famous product are Neo4j



NoSQL types
Time-series

• Used to store values associated to a timestamp


• Ideal for monitoring because they can ingest data rapidly and aggregate 
values


• Limited use-cases


• One of the most famous product is Druid



NoSQL
There is no clear cut

Many NoSQL databases do not fit in just one category. MarklogicDb is primarily 
a document-based db, but it implements graphs too.


Specifications change rapidly. MongoDb did not support ACID until a couple of 
years ago.


It is very common to have REST apis, some products support libraries, some 
are integrated in Spring. In general integration with NoSQL is harder.


